投稿日: その他 論文紹介

Modelling User Interest for Zero-query Ranking

Liu Yang, Qi Guo, Yang Song, Sha Meng, Milad Shokouhi, Kieran McDonald, and W. Bruce Croft
In Proc. of ECIR 2016

概要

Google NowやMicrosoft Cortanaといった、ユーザの状況に応じてカードをランキングして表示するアプリにおいて、Learning to Rankを用いたカードのランキング精度の改善を目的とした論文。

特徴量

Learning to Rankに使用する特徴量は以下の3カテゴリ。

  1. Cart Type based Implicit Feedback Features: カードの種類(ニュースや、天気予報、フライト情報など)単位で決まる特徴量。Dwell timeが30秒以上のSATなクリックの割合や、クリックをせずにカードを見ている平均時間など。
  2. Entity based User Interests Features: ユーザのWeb閲覧履歴等から推定される、ユーザが興味を持つトピックと、カードのトピックの類似度で決まる特徴量。
  3. User Demographics Features: 各カードをクリックしたユーザの属性で決まる特徴量。カードをクリックしたユーザの平均年齢や男女比など。

評価方法

Microsoft Cortanaのデータを使用。トレーニングデータは2015/3/18~24の1週間、テストデータは2015/3/25~31の1週間を使用。
クリック後30秒以上のdwell timeを持つカードと、クリックはされなかったが10秒以上閲覧されたカードを適合カードとして、LambdaMARTを使用して求めたランキングのMRRとnDCG@1を評価。
実験の結果、上記3カテゴリすべての特徴量を使用した場合が最も精度が高く、各特徴量の有用度を評価したろころ、1つ目のカテゴリの有用度が特に高いことがわかった。


-その他, 論文紹介

関連記事

The Last Click: Why Users Give up Information Network Navigation

Aju Thalappillil Scaria Rose Marie Philip Robert West Jure Leskovec In Proc. of WSDM 2014 概要 リンクをたどっ …

Optimizing Search by Showing Results In Context

Dumais, Susan Cutrell, Edward Chen, Hao In Proc. of CHI2001 http://dl.acm.org/citation.cfm?id=365116 …

Mining Query Subtopics from Search Log Data

Hu, Yunhua Qian, Yanan Li, Hang Jiang, Daxin Pei, Jian Zheng, Qinghua In Proc. of SIGIR 2012 http:// …

Predicting clicks: estimating the click-through rate for new ads

Richardson, Matthew Dominowska, Ewa Ragno, Robert In Proc. of WWW2007 概要 検索結果の横に表示される広告のCTRの推定を目的として …

Statistical Models of Music-listening Sessions in Social Media

Zheleva, Elena and Guiver, John and Mendes Rodrigues, Eduarda and Milić-Frayling, Nataša In Proc. of …