投稿日:2016/07/30 更新日: CIKM 論文紹介

Where you Instagram?: Associating Your Instagram Photos with Points of Interest

Li, Xutao and Pham, Tuan-Anh Nguyen and Cong, Gao and Yuan, Quan and Li, Xiao-Li and Krishnaswamy, Shonali
In Proc. of CIKM 2015

概要

Instagramで撮影された写真がどのPOIで撮影されたものかを推定することを目的とした論文。写真に付与されたテキスト情報、写真の画像特徴量、ユーザのPOIに対する好みを考慮して推定する。ユーザ自ら写真にPOIの情報を付与することもできるが、Instagram上でPOIが付与されている写真は30%未満なので、推定することは各POIに興味のあるユーザに写真を表示したりするアプリケーションのためにも有用である。

先行研究との違い

Flickrの画像が撮影されたLandmarkを推定する研究はある。先行研究の場合、Landmarkには大量の教師画像がFlickrに存在するので学習が楽だったが、Instagramの場合、10枚以上の教師画像が存在するPOIは全体の10%程度で、教師画像の数が少ないので工夫が必要になる。

手法

3カテゴリの特徴量を使用。

  1. Textual context
  2. 写真に付与されたコメントからベクトルを作成。ベクトルの要素は単語の出現回数。テキストのない写真は要素が全て0になるが、Instagramでは90%以上の写真にコメントが付与されている。

  3. Visual context
  4. SIFTを利用して画像をn次元のベクトルで表現。

  5. User preference
  6. ユーザが各POIで写真を撮影した回数だけからユーザのPOIに対する好みを学習すると、データがスパースすぎるので、ユーザとPOIをそれぞれk次元のトピックベクトルで表現。ベクトルの内積によって、ユーザのPOIに対する好みを求める。

Textual contentのベクトルの各要素に対する重み、Visual contextのベクトルの各要素に対する重み、User preferenceのk次元のベクトルの値をSGDで求める。

評価方法

ニューヨークとシンガポールのInstagramのデータを使用。MRRや上位n件に正解が含まれるテストデータの割合で評価し、3カテゴリ全てを考慮した場合の精度が最も高いことを示した。


-CIKM, 論文紹介

関連記事

Web Object Retrieval

Nie, Zaiqing Ma, Yunxiao Shi, Shuming Wen, Ji-Rong Ma, Wei-Ying In Proc. of WWW 2007 http://dl.acm.o …

Extending Faceted Search to the General Web

Kong, Weize Allan, James In Proc. of CIKM2014 http://dl.acm.org/citation.cfm?id=2661964 概要 ファセットを提示す …

Improving passage ranking with user behavior information

Weize Kong Elif Aktolga James Allan In Proc. of CIKM 2013 概要 検索中のユーザの振る舞いを基に検索結果をリランキングする研究はこれまでにも行わ …

Improving relevance judgment of web search results with image excerpts

Li, Zhiwei Shi, Shuming Zhang, Lei In Proc. of WWW2008 http://dl.acm.org/citation.cfm?id=1367497.136 …

Spatio-Temporal Topic Modeling in Mobile Social Media for Location Recommendation

Bo, Hu and Mohsen, Jamali and Martin, Ester In Proc. of ICDM 2013 概要 チェックインサービス等でのユーザと場所と時刻を考慮したモデル化 …