投稿日: SIGIR 論文紹介

Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction

Hu, Longke and Sun, Aixin and Liu, Yong
In Proc. of SIGIR 2014

概要

sの周辺の店の情報を利用することで、ユーザusに対するレーティング(星1~5)の予測を目的とした論文。

先行研究との違い

ユーザのアイテムに対するレーティングから行列を作成してmatrix factorization(MF)を適用する手法や、ユーザ間の影響を考慮したMFは提案されてきたが、地理的な情報を考慮してMFに適用したのはこの研究が初めて。

手法の概要

ユーザuの店sに対するレーティングを予測する際に、通常のMFに以下の要素を加えることで拡張。

  1. sの周辺k件の店の情報(各店を20次元に圧縮したベクトルで表現)。予備調査から、sに対するレーティングと周辺の店のレーティングには弱い相関があることがわかっており、この要素を加えた。
  2. sの属するカテゴリ情報(各カテゴリを20次元に圧縮したベクトルで表現)。各カテゴリに対するuの好みを考慮。
  3. sに対する他のユーザのレビュー文情報(各単語を20次元に圧縮したベクトルで表現)。
  4. sの人気度(レビュー数とチェックイン数の和)。
  5. uの”home location”とsの距離。

評価

Yelpの公開データを使用して、通常の推薦の研究と同様、テストデータにおけるMAEとRMSEを評価。
実験の結果、要素1~4を組み合わせた手法が最も精度が高く、要素5を取り入れると精度が悪化した。これは、ユーザが普段活動している場所からの距離はレーティングには無関係であることを表している。


-SIGIR, 論文紹介

関連記事

Tourist Trip Planning Functionalities: State–of–the–Art and Future

Souffriau, W. Vansteenwegen, P. In Current Trends in Web Engineering http://link.springer.com/chapte …

【論文紹介】The Influence of Early Respondents: Information Cascade Effects in Online Event Scheduling

Romero, Daniel M. and Reinecke, Katharina and Robert,Jr., Lionel P. WSDM 2017 ACM, PDF 概要 Doodleのような …

Quantifying Controversy in Social Media

Garimella, Kiran De Francisci Morales, Gianmarco Gionis, Aristides Mathioudakis, Michael In Proc. of …

Computers and iPhones and Mobile Phones, oh my! A logs-based comparison of search users on different devices.

Kamvar, Maryam Kellar, Melanie Patel, Rajan Xu, Ya In Proc. of WWW2009 http://dl.acm.org/citation.cf …

Predicting web searcher satisfaction with existing community-based answers

Liu, Qiaoling Agichtein, Eugene Dror, Gideon Gabrilovich, Evgeniy Maarek, Yoelle Pelleg, Dan Szpekto …